Circuits Worksheet 1. Calculate the equivalent resistance of the following combination: $R_{eq} = \underline{\hspace{1cm}}$ 2. Calculate the equivalent resistance of the following combination: $R_{eq} =$ 3. Complete the table by calculating the total resistance of the following series circuit. Then calculate total circuit current and the voltage drops and currents for each of the resistors. | | V | I | R | |----------------|-----|---|-------------| | Source | 12V | | | | R_1 | | | 2.0Ω | | R_2 | | | 4.0Ω | | R ₃ | | | 6.0Ω | 4. Complete the table by calculating the total resistance of the following parallel circuit. Then calculate total circuit current and the voltage drops and currents for each of the resistors. | | V | I | R | |--------|-----|---|-------------| | Source | 12V | | | | R_1 | | | 2.0Ω | | R_2 | | | 3.0Ω | | R_3 | | | 6.0Ω | 5. Calculate the missing information in the table for the following series-parallel network. | | V | I | R | |----------------|------|------|------| | Source | | 2.0A | | | R ₁ | | | 5.0Ω | | R_2 | 3.5V | | | | R ₃ | | 1.5A | | | R ₄ | 4.0V | | | | R ₅ | | 1.0A | | | R ₆ | | | 2.0Ω |