Circuits Worksheet

1. Calculate the equivalent resistance of the following combination:

 $R_{eq} = \underline{\hspace{1cm}}$

2. Calculate the equivalent resistance of the following combination:

 $R_{eq} =$

3. Complete the table by calculating the total resistance of the following series circuit. Then calculate total circuit current and the voltage drops and currents for each of the resistors.

	V	I	R
Source	12V		
R_1			2.0Ω
R_2			4.0Ω
R ₃			6.0Ω

4. Complete the table by calculating the total resistance of the following parallel circuit. Then calculate total circuit current and the voltage drops and currents for each of the resistors.

	V	I	R
Source	12V		
R_1			2.0Ω
R_2			3.0Ω
R_3			6.0Ω

5. Calculate the missing information in the table for the following series-parallel network.

	V	I	R
Source		2.0A	
R ₁			5.0Ω
R_2	3.5V		
R ₃		1.5A	
R ₄	4.0V		
R ₅		1.0A	
R ₆			2.0Ω