The bankruptcy sale at the Entropy Institute was going to be more difficult than Dave thought it'd be.
Periodic Table of the Elements

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>4.0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>He</td>
<td>1.0079</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Li</td>
<td>6.941</td>
<td>4</td>
<td>Be</td>
<td>9.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Na</td>
<td>22.99</td>
<td></td>
<td>12</td>
<td>Mg</td>
<td>24.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>K</td>
<td>39.10</td>
<td></td>
<td>20</td>
<td>Ca</td>
<td>40.08</td>
<td>21</td>
<td>Sc</td>
<td>44.96</td>
<td>22</td>
</tr>
<tr>
<td>37</td>
<td>Rb</td>
<td>85.47</td>
<td></td>
<td>38</td>
<td>Sr</td>
<td>87.62</td>
<td>39</td>
<td>Y</td>
<td>88.91</td>
<td>40</td>
</tr>
<tr>
<td>55</td>
<td>Cs</td>
<td>132.91</td>
<td></td>
<td>56</td>
<td>Ba</td>
<td>137.33</td>
<td>*</td>
<td>La</td>
<td>138.91</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Fr</td>
<td>226.02</td>
<td></td>
<td>89</td>
<td>Ac</td>
<td>227.03</td>
<td></td>
<td>104</td>
<td>Rf</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td></td>
<td>§Not yet named</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Lanthanide Series: 58 Ce 140.12 | 59 Pr 140.91 | 60 Nd 144.24 | 61 Pm 145 | 62 Sm 150.4 | 63 Eu 151.97 | 64 Gd 157.25 | 65 Tb 158.93 | 66 Dy 162.50 | 67 Ho 164.93 | 68 Er 167.26 | 69 Tm 173.04 | 70 Yb 173.44 | 71 Lu 174.97 |

† Actinide Series: 90 Th 232.04 | 91 Pa 231.04 | 92 U 238.03 | 93 Np 237.05 | 94 Pu 244 | 95 Am 243 | 96 Cm 247 | 97 Bk 247 | 98 Cf 251 | 99 Es 252 | 100 Fm 257 | 101 Md 258 | 102 No 259 | 103 Lr 260 |
AP Chemistry Equations & Constants

Throughout the test the following symbols have the definitions specified unless otherwise noted.

\[\text{L, mL} = \text{liter(s), milliliter(s)} \]
\[\text{mm Hg} = \text{millimeters of mercury} \]
\[\text{g} = \text{gram(s)} \]
\[\text{J, kJ} = \text{joule(s), kilojoule(s)} \]
\[\text{nm} = \text{nanometer(s)} \]
\[\text{V} = \text{volt(s)} \]
\[\text{atm} = \text{atmosphere(s)} \]
\[\text{mol} = \text{mole(s)} \]

ATOMIC STRUCTURE

\[E = h\nu \]
\[c = \lambda\nu \]

Planck’s constant, \(h = 6.626 \times 10^{-34} \text{ J s} \)

Speed of light, \(c = 2.998 \times 10^8 \text{ m s}^{-1} \)

Avogadro’s number = \(6.022 \times 10^{23} \text{ mol}^{-1} \)

Electron charge, \(e = -1.602 \times 10^{-19} \text{ coulomb} \)

EQUILIBRIUM

\[K_c = \frac{[C]^c[D]^d}{[A]^a[B]^b}, \text{ where } a A + b B \leftrightarrow c C + d D \]

\[K_p = \frac{(P_c)^c(P_d)^d}{(P_a)^a(P_b)^b} \]

\[K_a = \frac{[H^+][A^-]}{[HA]} \]

\[K_b = \frac{[OH^-][HB^+]}{[B]} \]

\[K_w = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^\circ \text{C} \]

\[= K_a \times K_b \]

\[\text{pH} = \text{-log}[H^+], \text{ pOH} = \text{-log}[OH^-] \]

\[14 = \text{pH} + \text{pOH} \]

\[\text{pH} = pK_a + \log \frac{[A^-]}{[HA]} \]

\[\text{pK}_a = -\log K_a, \text{ pK}_b = -\log K_b \]

Equilibrium Constants

\(K_c \) (molar concentrations)
\(K_p \) (gas pressures)
\(K_a \) (weak acid)
\(K_b \) (weak base)
\(K_w \) (water)

KINETICS

\[\ln[A]_t - \ln[A]_0 = -kt \]

\[\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt \]

\[t_{1/2} = 0.693 \frac{k}{t} \]

\(k \) = rate constant
\(t \) = time
\(t_{1/2} \) = half-life
GASES, LIQUIDS, AND SOLUTIONS

\[PV = nRT \]

\[P_A = P_{\text{total}} \times X_A, \text{ where } X_A = \frac{\text{moles } A}{\text{total moles}} \]

\[P_{\text{total}} = P_A + P_B + P_C + \ldots \]

\[n = \frac{m}{M} \]

\[K = ^\circ \text{C} + 273 \]

\[D = \frac{m}{V} \]

KE per molecule = \(\frac{1}{2}mv^2 \)

Molarity, \(M \) = moles of solute per liter of solution

\(A = abc \)

THERMOCHEMISTRY/ ELECTROCHEMISTRY

\[q = mc\Delta T \]

\[\Delta S^\circ = \sum S^\circ \text{ products} - \sum S^\circ \text{ reactants} \]

\[\Delta H^\circ = \sum \Delta H_f^\circ \text{ products} - \sum \Delta H_f^\circ \text{ reactants} \]

\[\Delta G^\circ = \sum \Delta G_f^\circ \text{ products} - \sum \Delta G_f^\circ \text{ reactants} \]

\[\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \]

\[= -RT \ln K \]

\[= -nFE^\circ \]

\[I = \frac{q}{t} \]

\(P \) = pressure
\(V \) = volume
\(T \) = temperature
\(n \) = number of moles
\(m \) = mass
\(M \) = molar mass
\(D \) = density
\(KE \) = kinetic energy
\(v \) = velocity
\(A \) = absorbance
\(a \) = molar absorptivity
\(b \) = path length
\(c \) = concentration

Gas constant, \(R = 8.314 \text{ J mol}^{-1} \text{K}^{-1} \)

\[= 0.08206 \text{ L atm mol}^{-1} \text{K}^{-1} \]

\[= 62.36 \text{ L torr mol}^{-1} \text{K}^{-1} \]

1 atm = 760 mm Hg

= 760 torr

STP = 0.00°C and 1.000 atm

\(q \) = heat
\(m \) = mass
\(c \) = specific heat capacity
\(T \) = temperature
\(S^\circ \) = standard entropy
\(H^\circ \) = standard enthalpy
\(G^\circ \) = standard free energy
\(n \) = number of moles
\(E^\circ \) = standard reduction potential
\(I \) = current (amperes)
\(q \) = charge (coulombs)
\(t \) = time (seconds)

Faraday's constant, \(F = 96,485 \text{ coulombs per mole of electrons} \)

1 volt = \(\frac{1 \text{ joule}}{1 \text{ coulomb}} \)
What I Absolutely Have to Know to Survive the AP Exam
The following might indicate the question deals with thermochemistry and thermodynamics:
calorimeter; enthalpy (ΔH); specific heat (C_p); endothermic; exothermic; heat (q); heat capacity (C); heat transfer; bond energy; entropy (ΔS); Gibb’s free energy (ΔG); spontaneous; state function

Laws of Thermodynamics

<table>
<thead>
<tr>
<th>Law</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeroth Law</td>
<td>Heat flows from hot to cold</td>
</tr>
<tr>
<td>First Law</td>
<td>Energy and matter are conserved</td>
</tr>
<tr>
<td>Second Law</td>
<td>Matter tends towards chaos</td>
</tr>
<tr>
<td>Third Law</td>
<td>Entropy of a pure crystal at 0K is zero</td>
</tr>
</tbody>
</table>

Thermodynamic Terms

<table>
<thead>
<tr>
<th>Term</th>
<th>What does each term tell us?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enthalpy (ΔH)</td>
<td>Energy content + endothermic − exothermic</td>
</tr>
<tr>
<td>Entropy (ΔS)</td>
<td>Disorder + increase in the dispersal of matter − decrease in the dispersal of matter</td>
</tr>
<tr>
<td>Free energy (ΔG)</td>
<td>Thermodynamically favored or not favored + not thermodynamically favored − thermodynamically favored</td>
</tr>
<tr>
<td>Equilibrium (K)</td>
<td>Extent of reaction >1 reaction favors products <1 reaction favors reactants</td>
</tr>
</tbody>
</table>

Internal Energy (ΔE) and Heat Flow
- Refers to all of the energy contained within a chemical system.
- Heat flow between the system and its surroundings involves changes in the internal energy of the system. It will either increase or decrease
 - Increases in internal energy may result in a
 - temperature increase
 - chemical reaction starting
 - phase change
 - Decreases in internal energy may result in a
 - a decrease in temperature
 - phase change
- Note: even though the change in internal energy can assume several different forms, the amount of energy exchanged between the system and the surroundings can be accounted for ONLY by heat (q) and work (w)
 - $\Delta E = q + w$
- Work (w) refers to a force acting on an object; in chemical processes this acting force is done by a gas through expansion or to a gas by compression.
 - This is referred to as “pressure/volume” work
 - Thus, $w = -P\Delta V$
 - Where P is constant external pressure (atm) and ΔV (L) is the change in volume of the system
Calculating Heat \((q)\)
- Heat \((q)\) gained or lost by a specific amount of a known substance can be calculated using the heat capacity of the substance and the change in temperature the system undergoes.
- Calorimetry
 - The process of experimentally measuring heat by determining the temperature change when a body absorbs or releases energy as heat.
- Coffee-cup calorimetry – use a Styrofoam cup, mix reactants that begin at the same temperature and look for change in temperature; the heat transfer is calculated from the change in temp.
 \[q = mC\Delta T \]
 - \(q\) = quantity of heat (Joules)
 - \(\Delta T\) is the change in temperature
 - \(\Delta T = T_f - T_i\) (final – initial)
 - watch the sign; if the system loses heat to the surroundings then the \(\Delta T = -\)
 - \(C_p\) = specific heat capacity \((\text{J/g}\cdot\text{°C})\)
 - \(m\) = mass in grams
 - the specific heat of water (liquid) = 4.184 J/g\(\cdot\)°C

Also note:
- \(q = -\Delta H\) at constant pressure

Enthalpy \((\Delta H)\)

<table>
<thead>
<tr>
<th>Enthalpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat content; (\Delta H)</td>
</tr>
<tr>
<td>Endothermic (+) or Exothermic (-)</td>
</tr>
<tr>
<td>Calculating Enthalpy 5 Ways</td>
</tr>
<tr>
<td>Calorimetry (see above)</td>
</tr>
<tr>
<td>Enthalpy of formation, (\Delta H_f) (using table of standard values)</td>
</tr>
<tr>
<td>Hess’s Law</td>
</tr>
<tr>
<td>Stoichiometry</td>
</tr>
<tr>
<td>Bond Energies</td>
</tr>
</tbody>
</table>

\(\Delta H_f\) – Enthalpy of Formation
- Production of **ONE MOLE** of compound FROM ITS ELEMENTS in their standard states (\(^\circ\))
- Zero (0) for ELEMENTS in standard states: 25°C (298 K), 1 atm, 1M

Big Mamma Equation: \[\Delta H_f^{\text{rxn}} = \sum \Delta H_f^{\text{products}} - \sum \Delta H_f^{\text{reactants}} \]

3 Al(s) + 3 NH\(_4\)ClO\(_4\)(s) → Al\(_2\)O\(_3\)(s) + AlCl\(_3\)(s) + 3 NO(g) + 6 H\(_2\)O(g)

<table>
<thead>
<tr>
<th>Substance</th>
<th>(\Delta H_f) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH(_4)ClO(_4)(s)</td>
<td>-295</td>
</tr>
<tr>
<td>Al(_2)O(_3)(s)</td>
<td>-1676</td>
</tr>
<tr>
<td>AlCl(_3)(s)</td>
<td>-704</td>
</tr>
<tr>
<td>NO(g)</td>
<td>90.0</td>
</tr>
<tr>
<td>H(_2)O(g)</td>
<td>-242</td>
</tr>
</tbody>
</table>
Hess’s Law

- Enthalpy is not dependent on the reaction pathway. If you can find a combination of chemical equations that add up to the desired overall equation, you can sum up the ΔH_{rxn}’s for the individual reactions to get the overall ΔH_{rxn}.
- Remember this:
 - First decide how to rearrange equations so reactants and products are on appropriate sides of the arrows.
 - If equations had to be reversed, change the sign of ΔH.
 - If equations had been multiplied to get a correct coefficient, multiply the ΔH by the coefficient.
 - Check to ensure that everything cancels out to give you the correct equation.
 - **Hint** It is often helpful to begin working backwards from the answer that you want!

$$C_2H_6(g) + \frac{7}{2} O_2(g) \rightarrow 2 CO_2(g) + 3 H_2O(g)$$

$$2 C(s) + 3 H_2(g) \rightarrow C_2H_6(g) \quad \Delta H^\circ = -84.68 \text{ kJ mol}^{-1}$$

$$C(s) + O_2(g) \rightarrow CO_2(g) \quad \Delta H^\circ = -394 \text{ kJ mol}^{-1}$$

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g) \quad \Delta H^\circ = -286 \text{ kJ mol}^{-1}$$

Using Stoichiometry to Calculate ΔH

- Often questions are asked about the enthalpy change for specific quantities in a reaction.
 - Use a little stoichiometry to solve these; just remember the $\Delta H^\circ_{\text{rxn}}$ is per mole and convert to the unit and quantity given.

How much heat is released when 1.00 g iron is reacted with excess O_2?

$$4 \text{ Fe(s)} + 3 O_2(g) \rightarrow 2 \text{ Fe}_2O_3(s) \quad \Delta H^\circ_{\text{rxn}} = -1652 \text{ kJ/mol rxn}$$

$$heat \ released = \frac{-1652 \text{ kJ}}{4 \text{ mol Fe}} \times \frac{1.00 \text{ g}}{55.85 \text{ g mol}^{-1}} = -7.39 \text{ kJ per gram of Fe}$$

- the (–) represents the LOSS or release of heat.
- can also write 7.39 kJ released per gram of Fe.

Using Bond Energy to Calculate ΔH

- Be able to use individual Bond Energy data to calculate the overall enthalpy change for a reaction.

$$\Delta H^\circ_{\text{rxn}} = \text{Sum of Bonds Broken} – \text{Sum of Bonds Formed}$$

$$H_2(g) + F_2(g) \rightarrow 2 \text{ HF(g)}$$

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Bond Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>H–H</td>
<td>432 kJ/mol</td>
</tr>
<tr>
<td>F–F</td>
<td>154 kJ/mol</td>
</tr>
<tr>
<td>H–F</td>
<td>565 kJ/mol</td>
</tr>
</tbody>
</table>
Entropy (ΔS)

- Dispersal of matter
- Less dispersal (−) or More dispersal (+)
- Calculating Entropy
 - Table of standard values
 - Hess’s Law

Entropy increases when:
- Gases are formed from solids or liquids (most important!!!!)
 - \(\text{H}_2\text{O}(ℓ) \rightarrow \text{H}_2\text{O}(g) \)
 - \(\text{C}(s) + \text{CO}_2(g) \rightleftharpoons 2 \text{CO}(g) \)
- A solution is formed
- Volume is increased in a gaseous system (energy is more efficiently dispersed)
- More complex molecules are formed

Big Mamma Equation II: \(\Delta S^\circ_{\text{rxn}} = \Sigma \Delta S^\circ_{\text{products}} - \Sigma \Delta S^\circ_{\text{reactants}} \)

2 \(\text{SO}_2(g) + \text{O}_2(g) \rightarrow 2 \text{SO}_3(g) \)

<table>
<thead>
<tr>
<th>Substance</th>
<th>(S^\circ) (J K(^{-1}) mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SO}_2(g))</td>
<td>248.1</td>
</tr>
<tr>
<td>(\text{O}_2(g))</td>
<td>205.3</td>
</tr>
<tr>
<td>(\text{SO}_3(g))</td>
<td>256.6</td>
</tr>
</tbody>
</table>
Free Energy (ΔG)

<table>
<thead>
<tr>
<th>Free Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermodynamic favorability of the reaction</td>
</tr>
<tr>
<td>Thermodynamically favorable ($-\Delta G^\circ$) or thermodynamically unfavorable ($+\Delta G^\circ$)</td>
</tr>
<tr>
<td>Calculate:</td>
</tr>
<tr>
<td>Table of standard values</td>
</tr>
<tr>
<td>Hess’s Law</td>
</tr>
</tbody>
</table>

Big Mamma Equation III: $\Delta G^\circ_{\text{rxn}} = \Sigma \Delta G^\circ_{\text{(products)}} - \Sigma \Delta G^\circ_{\text{(reactants)}}$

- ΔH°, ΔS°, and ΔG° may all be calculated from tables of standard values, from Hess’ Law or from the Gibb’s equation:

Connections to ΔH° and ΔS°:

Granddaddy of Them All: $\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ$

Caution on units: ΔH° and ΔG° are typically given in kJ mol$^{-1}$ whereas ΔS° typically given as J K$^{-1}$mol$^{-1}$

Conditions of ΔG

<table>
<thead>
<tr>
<th>ΔH</th>
<th>ΔS</th>
<th>ΔG</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-$</td>
<td>$+$</td>
<td>Spontaneous ($-$) at all temp</td>
</tr>
<tr>
<td>$+$</td>
<td>$+$</td>
<td>Spontaneous ($-$) at high temp</td>
</tr>
<tr>
<td>$-$</td>
<td>$-$</td>
<td>Spontaneous ($-$) at low temp</td>
</tr>
<tr>
<td>$+$</td>
<td>$-$</td>
<td>Non-spontaneous ($+$) at all temp</td>
</tr>
</tbody>
</table>

Free Energy, Equilibrium, and Cell Potential

<table>
<thead>
<tr>
<th>ΔG°</th>
<th>K</th>
<th>E°</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>at equilibrium</td>
<td>0</td>
</tr>
<tr>
<td>negative</td>
<td>>1, products favored</td>
<td>$+$</td>
</tr>
<tr>
<td>positive</td>
<td><1, reactants favored</td>
<td>$-$</td>
</tr>
</tbody>
</table>

- Connecting ΔG° to K
 - $\Delta G^\circ = -RT \ln K$

- Connecting ΔG° to E
 - $\Delta G^\circ = -n F E^\circ$
Endothermic v. Exothermic

PROBLEM STRATEGY
You should be able to determine if the reactions are endothermic or exothermic and possibly determine the value of the ΔH° if the diagram has energy values given. For kinetics you will be asked to label the activation energy, E_a. CAUTION. Make sure to read carefully as questions are often asked about the reverse reaction.

![Reaction Pathway Diagram](image-url)
Thermochemistry Cheat Sheet

Relationships

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q = mC_p\Delta T)</td>
<td>(\Delta G = \Delta H - T\Delta S)</td>
</tr>
<tr>
<td>(q = \Delta H) (when pressure is constant/coffee cup)</td>
<td>(\Delta S_{\text{rxn}} = \sum \Delta S_{\text{prod}} - \sum \Delta S_{\text{react}})</td>
</tr>
<tr>
<td>((\text{--}) q_{\text{lost}} = q_{\text{gained}}) (same value; opp. sign)</td>
<td>(\Delta G_{\text{rxn}} = \sum \Delta G_{\text{prod}} - \sum \Delta G_{\text{react}})</td>
</tr>
<tr>
<td>(\Delta H_{\text{rxn}} = \sum \Delta H_{\text{prod}} - \sum \Delta H_{\text{react}})</td>
<td>(\Delta G^\circ = -RT\ln K) (use (8.31 \times 10^{-3} \text{ kJ/molK}) for (R)) and watch your units for (\Delta G): they will be in kJ</td>
</tr>
<tr>
<td>(\Delta H_{\text{rxn}} = \sum \text{bonds}{\text{broken}} - \sum \text{bonds}{\text{formed}})</td>
<td>(\Delta G^\circ = -n \mathbb{E} E^\circ) (96,500 for (\mathbb{E}))</td>
</tr>
<tr>
<td>(-\Delta H) is exothermic; (+\Delta H) is endothermic</td>
<td>(\Delta S = \frac{\Delta H}{T}) at equilibrium (including phase change)</td>
</tr>
<tr>
<td>(\Delta G = 0) at equilibrium and direction change</td>
<td></td>
</tr>
<tr>
<td>Be cautious of which system component is losing heat and which is gaining heat. Assign +/- signs accordingly.</td>
<td>Use (\Delta G = \Delta H - T\Delta S) equation to justify thermodynamic favorability. Discuss (\Delta H) “overtaking” the (T\Delta S) term and vice versa.</td>
</tr>
</tbody>
</table>

Connections

| Kinetics – reaction diagrams | Electrochem: \(\Delta G = -n \mathbb{E} E^\circ \) |
| Stoichiometry – Energy values are usually kJ/mol so if you have other than 1 mole adjust accordingly | Equilibrium: \(\Delta G = -RT\ln K \) |

Potential Pitfalls

\(\Delta H_{\text{rxn}} \) is usually in kJ mol\(^{-1}\) (that’s per mol of rxn)	\(\Delta S \) is in J/K not in kJ like \(\Delta H \) and \(\Delta G \)
\(\Delta H_f \) is usually in kJ mol\(^{-1}\)	\(\Delta G \) must be negative for thermodynamic favorability
\(C_p = \text{J/g}^\circ \text{C} \) (specific heat units)	Watch your signs and know what they mean

UNITS CAUTION: this calculation gives \(w \) in units of (L \cdot atm) not Joules (or kJ)!!!!

- 1 atm = 101,325 \(\frac{\text{N}}{\text{m}^2} \) and 1 L = 0.001 m\(^3\)
- 1 L \cdot atm = 101.3 N \cdot m = 101.3 J

ALL \(P\Delta V \) calculations for work need to be \(\times 101.3 \) to convert to Joules, J
NMSI Super Problem

Magnesium flakes were added to an open polystyrene cup filled with 50.0 mL of 1.00 M HCl solution. Assume the specific heat of the solution to be 4.18 J/g°C.

\[
\text{Mg(s)} + 2 \text{HCl(aq)} \rightarrow \text{MgCl}_2(aq) + \text{H}_2(g) \quad \Delta H^\circ_{\text{rxn}} = -316.0 \text{ kJ mol}^{-1}
\]

(a) If 0.600 g of the magnesium were added, determine the total amount of heat released into the calorimeter.

(b) Determine the temperature change in the calorimeter.

(c) Draw an energy diagram and label the enthalpy change, ΔH, for the reaction.

The hydrogen gas produced in the reaction of magnesium and HCl was captured and placed in a sealed container, which occupies a volume of 650 mL at a constant pressure of 1.0 atm. The temperature of the container and gas was changed by 15°C; the resulting volume of the gas in the container is 620 mL.

(d) Is the temperature of the system increasing or decreasing. Justify your answer.

(e) Is the statement in the box below correct? Justify your answer.

The gas collected in the container does work on the surroundings

Answer the following questions about the oxidation of magnesium metal.

\[
\text{Mg(s)} + \frac{1}{2} \text{O}_2(g) \rightarrow \text{MgO(s)}
\]

(f) Determine the value of the standard enthalpy change for the reaction in the box above.

\[
\text{Mg(s)} + 2 \text{HCl(aq)} \rightarrow \text{MgCl}_2(aq) + \text{H}_2(g) \quad \Delta H^\circ_{\text{rxn}} = -316.0 \text{ kJ mol}^{-1}
\]
\[
\text{MgO(s)} + 2 \text{HCl(aq)} \rightarrow \text{MgCl}_2(aq) + \text{H}_2\text{O(ℓ)} \quad \Delta H^\circ_{\text{rxn}} = -45.7 \text{ kJ mol}^{-1}
\]
\[
\text{H}_2(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{H}_2\text{O(ℓ)} \quad \Delta H^\circ_{\text{rxn}} = -286 \text{ kJ mol}^{-1}
\]

(g) Determine the value of the standard entropy change, $\Delta S^\circ_{\text{rxn}}$, for the oxidation of magnesium using the information in the following table.

<table>
<thead>
<tr>
<th>Substance</th>
<th>S° (J mol$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td>33</td>
</tr>
<tr>
<td>O$_2$</td>
<td>205</td>
</tr>
<tr>
<td>MgO</td>
<td>27</td>
</tr>
</tbody>
</table>
(h) Calculate $\Delta G^{\circ}_{\text{rxn}}$ for the oxidation of magnesium at 25°C

(i) Indicate whether the reaction is thermodynamically favored at 25°C. Justify your answer

The hydrogen gas collected and placed in the sealed container above is mixed with nitrogen gas to produce ammonia according to the Haber process shown below.

$$\text{N}_2(g) + 3 \text{H}_2(g) \rightleftharpoons 2 \text{NH}_3(g) \quad \Delta G^{\circ}_{\text{rxn}} = -34.1 \text{ kJ mol}^{-1} \quad \Delta H^{\circ}_{\text{rxn}} = -92.2 \text{ kJ mol}^{-1}$$

(j) In terms of the equilibrium constant, K, for the above reaction at 25°C

i. Predict whether K will be greater than, less than, or equal to one. Justify your choice.

ii. Calculate its value.

(k) In terms of the standard entropy change, ΔS°

i. Predict the sign of ΔS° for the above reaction. Justify your answer.

ii. Calculate the value of $\Delta S^{\circ}_{\text{rxn}}$ for the above reaction at 25°C.

(l) Using the data in the table below and the enthalpy of reaction, $\Delta H^{\circ}_{\text{rxn}}$, calculate the approximate bond energy of the nitrogen–hydrogen bond in ammonia.

<table>
<thead>
<tr>
<th>Bonds</th>
<th>Approximate Bond Energy (kJ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N–H</td>
<td>???</td>
</tr>
<tr>
<td>H–H</td>
<td>430</td>
</tr>
<tr>
<td>N≡N</td>
<td>960</td>
</tr>
</tbody>
</table>